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STUDY OVERSIGHT 
 

The manuscript was written by JZ, MFW, GW, MNE, CHP, KEN and JRD; the final version of 

the manuscript incorporated changes from coauthors. All authors vouch for the accuracy and 

completeness of the data and analyses presented and for the adherence of the study to the 

protocol. No commercial support was involved in the planning or execution of the study 

 

SUPPLEMENTARY METHODS 
 

Sample preparation and sequencing 
 

The cohort is comprised of 836 patients from St. Jude Children’s Research Hospital, 127 from 

the Children’s Oncology Group, 97 from Memorial Sloan Kettering Cancer Center, and 60 from 

collaborating centers in France, Brazil, Singapore, Taiwan, Toronto, Italy, Japan, and Australia. 

Nucleic acid extraction, library preparation, and sequencing have been previously described. 1-3 

In brief, after tissue homogenization and cell lysis, DNA was isolated using phenol chloroform 

extraction followed by EtOH precipitation.  Exome sequencing data was acquired using 1-2ug of 

genomic DNA with the Illumina Truseq Expanded Exome kit.  Whole genome library 

preparation and sequencing from an input of 500ng-2ug of genomic DNA was performed. For 

transcriptome sequencing, 2ug of Trizol extracted total RNA was mRNA enriched using oligo 

dT beads.  The resulting mRNA was used with the Superscript II Double Stranded cDNA 

synthesis kit to perform random primed cDNA and second strand DNA synthesis.  After 

fragmentation of the DNA to approximately 200bp with advanced focused acoustics (Covaris), 

library construction and amplification was performed using the Illumina TRUSEQ RNA library 
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preparation Kit (v2). Paired end 101 nucleotide reads (209 cycles) were acquired for all library 

types on the Illumina HiSeq 2000 sequencing platform. The average coverage for whole-genome 

and whole-exome sequencing is 30-fold and 100-fold, respectively. 

Whole-genome and whole-exome sequencing data has been uploaded to the European 

Bioinformatics Institute data portal (The European Genome-Phenome Archive, EGA; 

https://www.ebi.ac.uk/ega/) under the accessions of EGAD00001001432 for whole-genome 

sequencing and EGAD00001001433 for whole-exome sequencing. For patients with leukemia, 

germline samples were obtained once patients were in remission; for patients with solid tumors 

or brain tumors, a peripheral blood sample was used as the germline sample.  

Validation of germline variants  
 

All identified rare non-silent germline variants in the 60 autosomal dominant cancer 

susceptibility genes and MUTYH, the autosomal recessive gene on the ACMG list, regardless of 

pathogenic significance, were validated by MiSeq and/or Sanger sequencing in both germline 

and matched tumor samples. Primers were designed to flank the identified variant by using 

Primer34,5 with modifications. Optimal amplicon sizes ranged from approximately 400 bp to 800 

bp for use in downstream library construction. PCR was performed using the 2X AmpliTaq Gold 

360 master mix (Applied BioSystems), 400nM of each primer, and 20 ng of whole genome–

amplified (WGA) DNA using the following parameters: 95°C for 10 min, 95 °C for 30 sec, 65 

°C for 30 sec, 72 °C for 1 min for 35 cycles, 72 °C for 7 min, and storage at 4 °C. All amplicons 

were quality-checked on a 2% agarose E-gel (Invitrogen). Amplicons were pooled and purified 

using a Qiagen PCR cleanup kit. DNA libraries were created from pooled amplicons by using the 

http://https/www.ebi.ac.uk/ega/
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Nextera XT kit (Illumina), following the manufacturer’s instructions. Libraries were normalized 

for sequencing on an Illumina MiSeq by using a 2 × 150 paired-end version 2 sequencing kit.  

In total, validation was carried out for 623 germline variations that have available DNA. 

The overall validation rate was 98% (611/623). The 12 false positives were comprised of 7 wild-

type genotype calls and 5 variants caused by tumor-in-normal contamination. 

Analysis of tumor-in-normal contamination and germline mosaicism 
 

A low mutant allele fraction (MAF) in the germline sample may arise from either germline 

mosaicism or tumor-in-normal contamination. The use of WGS/WES for paired tumor/normal 

specimens enables the distinction of tumor-in-normal contamination from mosaicism, as the 

former is expected to affect all somatic mutations identified in the tumor genome, while germline 

mosaicism will only affect a single variant. Potential tumor-in-normal contamination were 

assessed based on the presence of mutant allele in clonal somatic SNVs identified in tumor. 

These clonal somatic SNVs were identified based on the expected mutant allele fraction after 

adjusting for the copy number status of each variant in the following possible three categories: 1) 

diploid heterozygous, 2) copy number neutral LOH and 3) 1-copy loss LOH and subsequent 

assessment of contamination also taken into account the CNV status in tumor. We then used a 

binomial distribution model to assess whether the observed mutant allele count in a germline 

sample was significantly less than the count predicted by the tumor-in-normal contamination 

level. A significant P value (P <0.05) resulted in rejection of the contamination hypothesis, and a 

high-depth verification sequencing was in turn carried out to validate the presence of mosaicism. 

Variants with significant P value but had a germline copy number gain were filtered as the 
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reduction of mutant allele of fraction from the expected 0.5 in a diploid genome could be 

attributed to bias in amplification of the chromosome that represents the reference allele.  

Automated germline classification 
 

With the exception of variants that matched those contained within the IARC TP53 database 

(http://p53.iarc.fr/), only novel single nucleotide variants (SNVs) or SNVs with  <0.1% 

population frequency in the NHLBI ESP database (http://evs.gs.washington.edu/EVS/) received 

an automatic classification. In-frame indels that matched dbSNP did not receive a classification. 

Indels present in 1000 Genomes or with multiple submissions in dbSNP were also excluded.  

Automated germline classification was performed for the non-silent coding variants 

detected within the list of 565 cancer-associated genes (Figure S1). This classification was based 

on matches to multiple germline variant databases as well as evaluation of potential functional 

annotations. The curated mutation databases included International Agency for Research on 

Cancer TP53, Breast Cancer Information Core, NCBI ClinVar, Human Gene Mutation Database, 

Universal Mutation, Leiden Open Variation Database, locus-specific databases for APC, MLH1, 

MSH2, MSH6, PMS2, RET and RB1, recurrent somatic mutations identified by PCGP or 

deposited at Catalogue of Somatic Mutations in Cancer (COSMIC, 

http://cancer.sanger.ac.uk/cancergenome/projects/cosmic).  

Classification consisted of three tiers, named gold, silver, and bronze.  Gold is reserved 

for truncation mutations in tumor suppressor genes, matches to truncation mutations and hotspot 

mutations in somatic mutation database, and perfect matches to highly-curated locus-specific 

databases, including the IARC TP53 database, NHGRI BRCA1 and BRCA2 database 

(http://research.nhgri.nih.gov/bic/) for  records marked clinically important, ARUP MEN2 

http://p53.iarc.fr/
http://evs.gs.washington.edu/EVS/
http://cancer.sanger.ac.uk/cancergenome/projects/cosmic
http://research.nhgri.nih.gov/bic/
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database for mutations in RET (http://www.arup.utah.edu/database/MEN2/MEN2_display.php), 

ASU database (http://telomerase.asu.edu/diseases.html) for TERT mutations, LOVD 

(http://chromium.lovd.nl/LOVD2/colon_cancer/home.php) for mutations in APC and MSH2,  

and the RB1 mutation database (http://rb1-lsdb.d-lohmann.de/home.php). Silver is used for 

variants of less certain significance, and bronze for variants more likely to be benign.   

Additional databases that were utilized included HGMD (http://www.biobase-

international.com/product/hgmd), ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/), and UMD 

(http://www.umd.be/LSDB.html), matches to which generally received a silver classification.  

Truncation mutations located close to the C-terminus of the protein that do not map to a 

functional domain were examined manually and consulted with external gene experts for their 

pathogenicity. 

Mutation databases were harmonized by the following approaches. Those containing 

transcript-oriented alleles were normalized to genomic orientation, where required (e.g. HGMD, 

COSMIC), and the genomic reference sequence was verified for all variants. Protein-change 

annotations were similarly standardized where possible, both to identify involved codons and to 

correct issues such as variations in stop codon formatting ("*", "X", "Ter", "Term", and "Stop").  

The RefSeq accession used by each database for annotation was also extracted to ensure that 

matches to protein annotations are based on the same isoform.  If an indication of clinical 

importance was provided, it was passed through and standardized into a common 5-tier 

classification of significance (pathogenic, probably pathogenic, variant of uncertain significance, 

probably benign or benign) where possible. 

Matching was performed via genomic coordinates where available, otherwise amino acid 

change annotations (a matching RefSeq accession is required for the latter match type) were 

http://www.arup.utah.edu/database/MEN2/MEN2_display.php
http://telomerase.asu.edu/diseases.html
http://chromium.lovd.nl/LOVD2/colon_cancer/home.php
http://rb1-lsdb.d-lohmann.de/home.php
http://www.biobase-international.com/product/hgmd
http://www.biobase-international.com/product/hgmd
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.umd.be/LSDB.html
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used.  The automated variant classifier identifies both perfect as well as imperfect matches, such 

as to the same genomic location or transcript codon number.  Imperfect matches (e.g., change to 

the same codon but to a different amino acid) receive a less significant classification than perfect 

matches.  For indels, variants are permitted +/- 3 nucleotides of mapping ambiguity, but are 

required to be of the same type and length. Additional evaluation is also performed based on 

gene class, variant functional annotation, and in-silico functional prediction algorithm calls.  

Truncation mutations including nonsense, frameshift and splice variants in tumor suppressor 

genes receive gold, otherwise silver.  In-frame indels are classified as silver.  If PolyPhen2 and 

MutationAssessor damage-prediction calls are available in dbNSFP6, variants predicted 

damaging are classified as silver, otherwise they are bronze.  Variants classified as gold by a 

separate somatic classifier receive silver. Useful annotations such as population information, 

pathological significance and PubMed IDs are extracted and reported where available. 

Curation of somatic mutation databases 
 

Somatic mutation data may facilitate the interpretation of germline data as familial studies have 

shown that germline mutations that confer cancer susceptibility may overlap with known somatic 

mutations7,8. Two sets of somatic mutation data were used to facilitate automated classification 

of germline mutation: a) somatic mutations identified from the PCGP; and b) Sanger’s COSMIC 

database, the most comprehensive data repository for somatic mutations identified in cancer. For 

COSMIC, the mutation data as well as the gene list of COSMIC Cancer Gene Census 

(http://cancer.sanger.ac.uk/cancergenome/projects/census/) were downloaded. All gene symbols 

were corrected by using the mapping between Entrez Gene ID and HUGO gene symbol provided 

by National Institute of Biotechnological Information (NCBI, http://www.ncbi.nlm.nih.gov). 

http://cancer.sanger.ac.uk/cancergenome/projects/census/
http://www.ncbi.nlm.nih.gov/
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Using these input data, we aimed to generate a list of genes for reporting important 

sequence mutations. To identify these genes, we focused on validated non-silent coding somatic 

mutations that have over-representation of truncation mutations (i.e. nonsense, frameshift), a 

hallmark for the inactivation of tumor suppressor genes; or recurrent hotspot mutations which are 

commonly identified in oncogenes and functional important mutations in tumor suppressor 

genes. As a quality check, the 18 genes recently identified to have high mutation rate but with no 

apparent biological impact9 were used as a negative control for this analysis. The mutation data 

from COSMIC used for this study included only those which were experimentally verified by 

using the tag “Confirmed somatic variant” or “Reported in another cancer sample as somatic”. 

To remove false positive sites that were actually germline polymorphisms, we further filtered 

those that overlap with germline variants present in >10 of the 6,503 non-cancer individuals 

sequenced by  NHLBI GO Exome Sequencing Project (ESP). 

Hypermutable tumors may skew the global mutation profile of a gene due to their 

contribution of excessive number of somatic mutation; thus were excluded in our analysis. 

Hypermutable tumors were identified by the following process. If a tumor with >100 coding 

somatic mutations is among the top 10% highest mutated tumors of the published study, it is 

considered a hypermutable tumor. A total of 448 tumors in COSMIC were identified as 

hypermutable through this process.  
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SUPPLEMENTARY RESULTS 
 

To determine the significance of our findings in pediatric cancer patients compared to control 

cohorts, we applied the same or similar analytical process (Fig. S1) to characterize pathogenic or 

probably pathogenic mutations in the 60 genes associated with autosomal dominant cancer 

predisposition syndromes (Fig. 2) in two non-cancer data sets. The first involves analyzing the 

raw high coverage depth whole exome sequencing data of 966 unidentified individuals from 

around the world (age >18 years) as part of the 1000 genome (1KG) project. The second 

involves analyzing genotype data of a pediatric cohort from the National Database for Autism 

Research (NDAR) consisting of 515 cases and 208 controls of autism. Details of data collection 

and analysis for each control cohort are described below.  

Analysis of whole-exome sequencing data from 1000 Genome project 
 

A total of 966 unrelated individuals selected from 970 subjects analyzed by whole exome 

sequencing by phase 3 of 1KG project were included in this analysis. The four excluded 

individuals either have their relatives (HG00124, HG00501, HG00635) or his/her parents 

(NA19240) included in the same cohort. Raw sequence data files in the format of binary 

sequence alignment (BAM) were downloaded by ftp 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3 ). The sequence data were generated using 

Illumina platform and aligned to reference human genome assembly hg19 by bwa (v0.5.9-r16), 

both of which match the sequence data generation workflow used for PCGP cohort. To compare 

results derived from de novo analysis using raw BAM files with those from genotype data 

generated by 1KG project, files in Variant Call Format (VCF) from version 5 data release were 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3
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downloaded by ftp (ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/supporting/vcf_with_sample_level_annot

ation/) 

Using the raw BAM files, we carried out variant detection, variant filtering, manual 

review of sequence reads, mutation classification and panel review of mutation pathogenicity for 

the 60 autosomal dominant cancer susceptibility genes. A total of 11 pathogenic or probably 

pathogenic mutations were identified in APC (n=1), BRCA1 (n=1), BRCA2 (n=4), MSH6 (n=1), 

SDHA (n=1), SDHB (n=1), and TP53 (n=2), one in each of 11 individuals (Table S6A). Three of 

the 11 mutations were also detected in PCGP cohort.  

  Five out of the 11 mutations were classified as pathogenic (Table S6B) as they have 

strong evidence for cancer susceptibility based on published literature, information in locus-

specific databases, and/or submitted case reports from molecular diagnostic labs in ClinVar, as 

detailed further below. Their presence within the 1KG cohort indicates uncharacterized cancer 

phenotypes in the 5 subjects enrolled, rather than refuting their significance in cancer 

susceptibility. One of the pathogenic mutations, p.R273H in TP53, is likely to be mosaic as the 

mutant allele fraction is below 0.3.  

   Six additional mutations were classified as probably pathogenic, five of which are 

truncation mutations in genes where loss of function is a known mechanism of disease. They 

were marked probably pathogenic because there is not enough corroborating evidence from other 

observations of the mutation in cancer to elevate them to the category of pathogenic under the 

ACMG (2015)-based guidelines. As with the pathogenic mutations described above, the 

presence of these probably pathogenic mutation in the 1KG individual is more likely indicative 

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/supporting/vcf_with_sample_level_annotation/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/supporting/vcf_with_sample_level_annotation/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/supporting/vcf_with_sample_level_annotation/
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of the unphenotyped cohort, as opposed to a lack of cancer relevance.  Collectively, the presence 

of these mutations represents a frequency of 1.1% in 1KG, which is significantly lower than the 

8.5% frequency discovered in our PCGP cohort (Fisher’s exact test p value=5.9E-16, odds 

ratio=7.9, Table S6C). 

 To evaluate the importance of accessing the raw sequence data vs. relying upon pre-

processed genotype data, we performed a parallel analysis using the VCF files for mutation 

classification. A total of 33 mutations were classified as pathogenic or probably pathogenic; 

however, manual review of sequence reads using the BAM files revealed that 25 of these 

variants were false positives due to mis-alignment in a polyA track or lack of sequence coverage. 

Furthermore, 4 pathogenic or probably pathogenic mutations identified by de novo analysis 

using the raw sequence files (e.g. the BAM files) were missing in the VCF files.  The difference 

in pathogenic mutations identified by de novo analysis using BAM files compared to those 

derived by VCF files highlights the importance of accessing raw sequence data when 

establishing the prevalence of variant pathogenicity, as false positive or false negative errors can 

have significant impacts on final results. 

Analysis of NDAR autism genotype data 
 

The autism data set consists of 723 individuals including 515 cases and 208 controls. The median 

age is 6.0 years (range 1-37) which is highly comparable to the median of 6.9 years (range, 0 – 

20 years) in PCGP. Genotype data for these individuals were from the VCF files downloaded via 

the link  “Genotype calls BROAD hg19” on NADR web site ( 

https://ndar.nih.gov/study.html?id=307) . We selected this data set because the genotype data 

were computed from whole exome sequencing data generated by Illumina HiSeq2000 or 

https://ndar.nih.gov/study.html?id=307
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Genome Analyzer IIx which is similar to those used for the analysis of PCGP cohort.  The VCF 

files were used for classification of pathogenic mutations. Due to observed issues with increased 

false positive and negative rates with this approach as noted in the previous section, we removed 

mutations suspected to be caused by mis-alignment within polyA tracks or other known 

signatures of sequencing artifacts.  NF1 and PTEN were not included in the analysis as these two 

genes have been known to be associated with autism10,11 

 A total of 4 out of the 723 subjects (0.6%) have pathologic or probably pathologic 

mutations compared to the 8.0% in the PCGP cohort and the result is highly significant (Table 

S7A-C, Fisher’s Exact test p=7.4e-16, odds ratio=15.7).  None was found in PCGP cohort.  All 

four variants are truncation mutations in genes where loss of function is a known mechanism of 

disease, two of which are classified pathogenic as they have strong evidence for disease 

association (Table S7B). 

Our analysis of two cohorts not selected based on cancer phenotype  (966 persons in 1KG 

and 723 persons in NDAR autism) shows approximately 1% prevalence of pathogenic mutations 

in the two cohorts, compared to the ~8% in PCGP; this difference is highly significant ( p value 

<1E-10). Use of the raw sequence files enables us to deliver a reliable result for the analysis of 

the 1KG cohort, while the VCF file based approach used for the NDAR analysis can only be 

considered a general estimate of the trend.  Interestingly, the number of individuals carrying 

pathogenic or probably pathogenic germline mutations in the two control data sets is not 

significantly different (Fisher’s exact test, p value =0.16). The results provide sufficient support 

for the importance of our findings in pediatric cancer . The 1KG data set was analyzed with the 

same procedure as used for our PCGP cohort, thereby providing a control for evaluating the 

significance of the PCGP findings.   
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The presence of pathogenic mutations in 1KG and NDAR indicates uncharacterized 

cancer phenotypes in people enrolled these studies, rather than refuting the mutation 

pathogenicity in relation to cancer susceptibility.  An estimated 35-40% of the population is 

diagnosed with cancer during the course their lifetime and 25% will succumb to their disease 

(http://seer.cancer.gov/statfacts/html/all.html) and previous population based studies have 

revealed 5-10% of cancer is heritable 

(http://www.cancer.org/cancer/cancercauses/geneticsandcancer/heredity-and-cancer).  Therefore 

approximately 20-40 individuals in 1KG cohort are predicted to be predisposed to developing 

cancer. These estimates are consistent with our evaluation of the 1KG genomes whereby we 

detected 11 pathogenic or probably pathogenic mutations. The observation that we are on the 

lower end of this estimated range is also not surprising, given the incompleteness of our 

knowledge of cancer predisposition genes.   

Significance of BRCA1, BRCA2 and PALB2 mutations in pediatric caner  
 

We observed that eight children harbored heterozygous mutations in BRCA1, BRCA2 and 

PALB2. These genes are not generally examined in children as they are considered to be 

predisposition genes for adult cancers.12-17 Interestingly, Magnusson et al.38 described a 

significantly higher prevalence of childhood cancer in families with germline BRCA2 mutations, 

and compared to population-based control families. Brooks et al.39 reported 20 cases of 

childhood cancer in 379 families with BRCA1 or BRCA2 mutations.18 Although none of the 

children in either study were tested for the familial BRCA1/2 mutations, they were assumed to be 

mutation carriers. The tumors described in these two reports strongly resemble those seen in our 

cohort, and include sarcomas, brain tumors and leukemias. Given the physical and functional 

interactions of BRCA1, BRCA2 and PALB2 during the DNA damage response,19 it is perhaps not 

http://seer.cancer.gov/statfacts/html/all.html
http://www.cancer.org/cancer/cancercauses/geneticsandcancer/heredity-and-cancer
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surprising that the tumors observed in children with these mutations are similar to those seen in 

LFS.20 Curiously, we observed that within the tumors from these patients, only one of our 

patients exhibited evidence for mutational inactivation or loss of the second allele. Several 

studies have looked for loss of heterozygosity (LOH) in the breast, ovarian, pancreatic and 

prostatic tumors of BRCA1 and BRCA2 mutation carriers. 21-27  Collectively, these studies reveal 

an LOH frequency of ~80% for BRCA1 and ~70% for BRCA2.28 Therefore, not all BRCA1 or 

BRCA2-associated tumors exhibit LOH. Currently, we do not know whether the BRCA1, BRCA2 

or PALB2 mutations reported here contributed to the formation of the tumors in this cohort. 

Nonetheless, it is by carrying out unbiased genetic studies such as ours, in conjunction with 

further biological investigations, that we will be able to elucidate whether there is a causal link 

between these mutations and the formation of tumors in children.  

Mutations in 29 genes associated with autosomal recessive cancer predisposition syndromes 

A total of 482 non-silent germline variants were identified within the 29 genes with 

autosomal recessive cancer predisposition syndromes. Thirty-nine variants were classified as 

pathogenic or probably pathogenic in 38 patients, and the majority (85%) were truncation 

mutations with the most commonly affected genes being ATM (n=5), ERCC3 (n=5), and WRN 

(n=4). LOH was identified in the tumor tissues from 3 patients, including 1 each with mono-

allelic germline mutations in SH2B3, FANCA or FANCM. A single patient with ataxia 

telangiectasia and a high-grade glioma harbored bi-allelic pathogenic mutations in ATM (Fig. S4 

in Supplementary Appendix 1). Of note, 4 patients harbored mono-allelic pathogenic/probably 

pathogenic mutations in genes associated with autosomal dominant as well as an autosomal 

recessive cancer predisposition syndromes (Table S8 in Supplementary Appendix 1).  
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Mutations in tumor suppressors, tyrosine kinases and other cancer genes 
 

Within the 58 other tumor suppressor genes examined, 730 non-silent mutations were identified 

(Table S5). These included 19 truncation mutations, 11 of which affect CHEK2 (n=4), PML 

(n=4) and BUB1B (n=3). Within the 23 kinases, 315 non-silent germline mutations were 

identified. Four of these mutations occurred in the tyrosine kinase domain of EGFR (T790M 

(n=1), H773D (n=1) and P848L (n=2), and were recurrently targeted by somatic mutations, 

mostly in lung cancer. While T790 and P848 exhibited the same amino acid change in somatic 

and germline mutations, only T790M (rs121434569) was deemed probably pathogenic by 

ClinVar. This mutation was also previously found to confer inherited susceptibility in familial 

lung cancer and was associated with resistance to kinase inhibitors29. Finally, within the 395 

other cancer genes examined, 3,239 non-silent mutations were observed, including 86 truncation 

mutations identified in 82 cases. Genes recurrently affected by truncation mutations included 

USP6 (n=6), RNF213 (n=5), FCRL4 (n=4), SHROOM2 (n=3), LAMA5 (n=3), GNAS (n=3), 

ECT2L (n=3), TSHR (n=2), TRIP11 (n=2), POLD1 (n=2), NUP214 (n=2), KIF5B (n=2), HOXA9 

(n=2), ACSL6 (n=2). Excluding those with P/PP mutations identified in the 89 cancer 

predisposition genes, an additional 78 cases were found to have truncation mutations in tumor 

suppressor genes or other cancer genes.  

Assessment of enrichment of protein truncation mutations in PCGP patients 
 

Across the 565 genes analyzed in this study, a total of 190 truncation mutations were identified 

in 176 out of 1,120 children (Table S5). Truncation mutations were most enriched in TP53, 

NOP10, FCRL4, PML, SHROOM2, USP6, WRN, ERCC3, HOXA9 and RB1 when compared to 

control individuals based on the an analysis of enrichment of protein truncation mutations 
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described below. 

To evaluate whether there is significant enrichment of protein truncation mutations in 

pediatric cancer patients, we compared the truncation mutations detected in the 1,120 PCGP 

patients with those in the 60,706 unrelated individuals analyzed by the The Exome Aggregation 

Consortium (ExAC) on a gene by gene basis (Table S9). Truncation mutations included 

nonsense, frameshift and splice site variations affecting the +1, -1, -2 and -3 splice junctions. 

While detailed phenotype data are currently unavailable, ExAC has removed individuals with 

serious childhood disorders (http://exac.broadinstitute.org), making it an acceptable control for 

the PCGP cohort. ExAC data for each gene was downloaded by FTP 

(ftp://ftp.broadinstitute.org/pub/ExAC_release) as publicly available VCF files (release 0.3, 

January 2015). ExAC data were subsequently subjected to the following criteria to achieve 

consistency with the St. Jude germline variant filtering process: 1) variants present on a list 

consisting of known dbSNP variants were filtered unless thery were also present in a “rescue” 

list of known pathogenic mutations from ClinVar, HGMD, and COSMIC; and 2) all variants had 

to have an observed combined population frequency of <0.1%. While germline risk variants are 

expected to exceed this threshold in some instances, these criteria allowed us to focus on rare, 

highly penetrant alleles with very low population frequency. For each gene that showed 

enrichment of truncation variants  in the PCGP cohort (odds ratio >1), we used Fisher’s Exact 

test to assess the significance of enrichment compared to ExAc. This comparison was done for 

exploratory purposes only and multiple caveats can influence interpretation. These include 

differences in technical assays, sample demographics, and variant calling pipelines, any one of 

which can lead to systematic biases that adversely impact results. While a number of steps can be 

taken to mitigate these effects, most involve access to primary data for joint-variant calling, 

http://exac.broadinstitute.org/
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and/or other sample meta-data which are not available in the public version of ExAC data set. 

Finally, ExAC include 7,601 TCGA patients out of 60,706 individuals (12.5%), and the 

comparison may inadvertently render genes that were mutated both in adult cancer and pediatric 

cancer insignficant. Given the above caveats, these results should be considered an exploratory 

comparison and interpreted with caution.  

Estimation of germline mutation prevalence based on cancer subtype distribution in SEER  
 

The patients examined in this study were from the Pediatric Cancer Genome Project, which was 

designed to include children with difficult-to-treat cancers for which there was limited 

understanding of the underlying mechanism driving tumor formation. The cohort includes an 

over-representation of patients with leukemia (particularly hypodiploid acute lymphoblastic 

leukemia, HYPO ALL) and adrenocortical tumors (ACT). ACT account for 1.7% and 3.5% of 

patients in SEER and PCGP, respectively; therefore, we reduced its contribution to overall 

germline mutation incidence by approximately 50%. HYPO accounts for 2% of the leukemia in 

SEER30 but 8% in PCGP leukemia. The mutation frequency in HYPO is approximately 23.4% 

while non-hypo ALL is approximately 2.7%. We first re-calibrated the prevalence of germline 

mutations in leukemia by adjusting for the over-representation of hypodiploid ALL in our 

cohort; the resulting 3.1% is lower than the original 4.4% but is still substantial. PCGP cohort 

has an over-representation of leukemia (52.5%) compared to the SEER (25%). Adjusting for 

both the over-representation of leukemia and over-representation of HYPO in leukemia resulted 

an overall contribution of 0.78% germline incidence in SEER by leukemia. Similar process has 

been applied to all cancer subtypes that were analyzed by PCGP. For cancer subtypes that were 

not included in PCGP, we applied the lower and higher germline mutation frequencies as 

reported in the published literature. Summarizing the contribution from all cancer subtypes 
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resulted in an estimated 7.3%-9.8% germline prevalence for SEER cohort, which is comparable 

to the 8.5% in our study.  The details are presented in Table S10. 
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SUPPLEMENTARY FIGURES 

Figure S1 Variant detection, analysis and classification pipeline. 
All coding variants were called from whole-genome sequencing (WGS) and whole-exome 
sequencing (WES). Transcriptome sequencing (RNAseq) were used for verifying aberrant 
splicing caused by splice variants. A series of QC checks was performed to ensure high-
confidence variant calls. Only rare variants with a population frequency <0.1% were retained. 
Rare variants matching known pathogenic variants in selected databases were labeled as putative 
“pathogenic variants”. If there were good matches in other databases that had weaker evidence of 
pathogenicity, or if there was in-silico evidence supporting possible pathogenicity, variants were 
classified as of uncertain significance. All pathogenic and probably pathogenic variants, and 
variants of uncertain significance affecting genes associated with autosomal dominant cancer 
predisposition syndromes, were validated using MiSeq or Sanger sequencing. A panel was 
formed to review each variant within the 89 cancer predisposition genes based on evidence from 
the literature, disease and locus specific databases, functional assay data, phenotypic data, 
disease inheritance patterns, and effects on RNA splicing. If the original mutant allele frequency 
(MAF) was lower than 0.3, we evaluated whether the variant was mosiac. P= Pathogenic, PP= 
Probably Pathogenic, U= Uncertain, PB=Probably Benign, and B= Benign. 
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Figure S2 Germline copy number variations in TP53, KRAS and PMS2.  
Wiggle plot of WGS read-depth spanning each CNV is shown on the UCSC genome browser. 
The germline genome is displayed in green color while the tumor genome is shown in brown 
color. A) In case HGG078, a 10.7-kb focal deletion removed the last two exons of TP53. B) In 
HYPO052, an 8.7-kb focal deletion removed exon 2 to exon 5 of TP53. The second allele of 
TP53 is lost in the tumor of HYPO052. This finding is consistent with previously reported31 
aberrant splicing across exon 1-exon 6. C) In EWS001316, a 4.9-kb focal deletion removed exon 
9 and exon 10 of germline PMS2. This CNV was also present in the patient’s tumor genome. D) 
A 1.8-Mb germline amplification spanning the KRAS locus in ETV073. We verified that the 
germline specimen of this case did not have tumor-in-normal contamination as deletion of  
CDKN2A, a well-characterized somatic lesion in ALL, was observed only in the tumor but not in 
the germline genome (data not shown). E) PMS2 germline deletion resulting from intra-
chromosomal translocation in LGG040. A 33-kb focal deletion removed the first 11 exons in the 
PMS2 locus. The gap was replaced with a 25.8-kb segment near the paralog PMS2CL. Therefore, 
in whole-genome sequencing, the PMS2 locus shows a deletion, while the PMS2CL locus shows 
a pattern of focal amplification. 
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Figure S3 Distribution of pathogenic or probably pathogenic germline mutations. 
Distribution of P/PP mutations within the 21 mutated genes associated with autosomal dominant 
cancer predisposition syndromes across patients with various cancers included in the PCGP 
cohort. The data is the same as Figure 3A. 
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Figure S4. Compound heterozygous germline mutations of ATM causing loss of function of 
both copies of this gene in HGG027. 
A) Bi-allelic loss of function germline mutations in ATM  detected in HGG027 includes a 
frameshift mutation (p.L2312fs)  and a splice site SNV at the splice junction of exon 52. B) The 
coverage tracks showed the expression of ATM gene in HGG027 tumor sample by RNA-seq. C) 
The germline splice variant leads to a novel exon junction at 11bp downsteam of the canonical 
exon junction of exon 52, producing a truncated ATM protein 
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 Figure S5. A zoomed-in ProteinPaint view of TP53 germline mutations on web portal.  
 

The URL for ProteinPaint is http://pecan.stjude.org. The default ProteinPaint view integrates 
somatic and germline mutations at each amino acid position with a solid arc marking the 
proportion of germline mutations at each site. This feature is illustrated in the legend “Origin”.  
The legend “Germline” itself also enables a germline-only view, indicated by striking through 
the “Somatic” and “Relapse” labels. The pull-down menu “Cancer subtype” summarizes the 
number and the classes of germline mutations in each cancer subtypes in a tabular form and 
serves as a “menu” for a subtype-specific proteinpaint view. Each subtype can be selected by a 
user to view  mutations in a cancer subtype. The “Sunburst” option provides an alternative 
summary of the relative contribution of different cancer subtypes to TP53 germline mutations 
detected in the PCGP cohort. The user can either view the entire protein or zoom in to a specific 
amino acid position (T125 in TP53) to view the coding sequence. The dotted line inside the 
protein demarcates the splice junction. The “silent” mutation T125T is classified as a splice 
variant (shown in color purple) because this mutation which is located at the -1 donor site causes 
aberrant splicing of TP53 based on our evaluation of RNASeq.  

 

 

  

http://pecan.stjude.org/
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Figure S6. Screenshot of ProteinPaint view of germline mutations in representative genes 
in each of the five categories.  
Panel A, B and C shows pathogenic and probably pathogenic mutations in TP53, APC and 
BRCA2, respectively, from the category of autosomal dominant cancer susceptibility genes. The 
color code representing mutation class in TP53 applies to all genes.  

Panel D, E and F shows pathogenic and probably pathogenic mutations in ATM, ERCC3 and 
WRN, respectively, from the category of autosomal recessive cancer susceptibility genes.  

Panel G, H, I shows protein truncation mutations in CHEK2, PML and BUB1B, respectively, 
from the category of tumor suppressor genes. Panel J, K shows protein truncation mutations in 
USP6, FCRL4, respectively, from the category of other cancer genes.  

Panel L, M, N shows the three germline mutations T790M, H773D,  P848L, respectively,  in the 
tyrosine kinase domain of EGFR that match somatic mutation hotspots within the COSMIC 
database. The COSMIC data are shown at the bottom, indicating that there are a total of 353, 12 
tumors (mostly of lung cancer) are mutated at T790M, P848L, respectively. P848L is the only 
variant present at low frequency (0.09%) in NHLBI and its status as a valid somatic mutation 
was only verified by 1 tumor, raising the possibility that it could be a rare germline variation 
masquerading as a somatic mutation due to the fact that earlier study  may have relied on the 
absence in dbSNP to determine the somatic origin of a genetic variation32. P848L is classified as 
benign in ClinVar, further raising doubts about it being a valid somatic mutation hotspot. By 
contrast, T790M is absent from NHLBI and is a confirmed somatic variants in >90 tumors and is 
classified as probably pathogenic by ClinVar. In COSMIC, seven SNVs and 11 in-frame 
insertions affect H773, although none of them has the alternative allele resulting in a Histidine 
(H) to Aspartate (D) change. No germline variation at H773 was found at NHLBI or dbSNP.  
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Figure S7. Analyis of family history. A) 95 patients with pathogenic or probably pathogenic 
germline mutations. B) 100 patiens randomly selected from the remaining 1,025 patients. 
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Figure S8. Family history of two cases with BRCA2 mutation.  
A) Family history of MB039 who harbors a heterozygous germline L3000X mutation affecting 
BRCA2. The affected cases from three generations of this family were all mutation-positive.  B) 
Family history of case RHB010 who harbors a heterozygous frameshift mutation in BRCA2. The 
family members were sequenced by Myriad.  
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Figure S9. Genes sets assessed in this study. 
The members of the primary gene sets examined in this study are depicted. The autosomal 
dominant cancer predisposition genes (N=60) represent the primary focus of our analyses, 
followed by autosomal recessive (N=29), kinases (N=23), and tumor suppressors (N=58). We 
note that the categorization here is simplified for the purpose of display, and some genes fall 
within multiple categories.  MSH6 and TERT, for example, can display both autosomal 
dominant and autosomal recessive inheritance patterns depending on the biological context. 
Another example is CHEK2, which is both a tumor suppressor and a kinase.  These distinctions 
are better captured in Supplementary Appendix 2, Table S2. There, the reader will also find 
additional genes implicated in cancer (N=395) that were surveyed in this study. 
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SUPPLEMENTARY TABLES 
 

Table S1. Clinical information on patients examined in this study 

Disease 
Age at Diagnosis Sex 

Subtotal 0-1 
y 

1-5 
y 

5-10 
y 

10-15 
y 

15-20 
y Unknown Female Male 

Leukemia  34 103 91 107 74 179 260 328 588 
Central Nervous System 12 84 85 43 12 9 115 130 245 
ACT 3 27 4 3 1 1 25 14 39 
Ewing sarcoma 0 0 0 0 0 46 17 29 46 
Melanoma 1 1 0 2 1 0 2 3 5 
Neuroblastoma 6 25 17 9 2 41 47 53 100 
Osteosarcoma 0 0 5 8 3 23 19 20 39 
Retinoblastoma 3 1 0 0 0 11 8 7 15 
Rhabdomyosarcoma 3 14 16 4 6 0 21 22 43 
Subtotal 62 255 218 176 99 310 514 606 1120 

 

Table S2. Categories and information about the 565 cancer genes selected for germ line 
mutation analysis. 
See Supplementary Appendix 2, Table S2.  

Table S3. Sequence coverage of the 565 genes analyzed.  
Percentage of coding exonic bases at >=10x, 20x and 30x across 565 genes. 

NGS Specimen 
% coding exonic bases covered  
>=10x >=20x >=30x 

WGS 
Germline 96 85 55 
Tumor 97 91 79 

WES 
Germline 95 91 84 
Tumor 95 91 85 

 

Table S4. Germline mutations discovered in PCGP cohort.  
See Supplementary Appendix 2, Table S4a-e for mutations in autosomal dominant, autosomal 
recessive, tumor suppressor, kinase and other cancer genes.  
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Table S5. Germline mutation summary in PCGP cohort.   
 
A. Summary of autosomal dominant and autosomal recessive cancer susceptibility genes 

Category #Gene 
All Mutations   

Pathogenic/Probably 
Pathogenic 

#Mut #Cases #Genes   #Mut #Cases #Genes 

Autosomal 
Dominant 60 633 478 51  95 94 21 

Autosomal 
Recessive 

29 486 400 28 
  

39 38 20 

 
B. Summary of tumor suppressor, kinase and other cancer genes 

Category #Gene 
All Mutations   

Protein Truncation 
Mutations 

#Mut #Cases #Genes   #Mut #Cases #Genes 

Tumor 
Suppressor 58 730 520 53  19 19 9 

Kinase 23 315 270 21 
 

9 9 7 
Other 
Cancer 
Gene 

395 3,297 1,070 309 
  

86 82 59 
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Table S6. Pathogenic (P) or probably pathogenic (PP) mutations identified in the 966 un-
related individuals from 1000 Genome Project 
 

A. Pathogenic or probably pathogenic mutations 
^Subject Gene Mutation Type Pathogenicity 
HG00365 BRCA1 splice A1453_E12splice P 
NA20517 SDHA nonsense S384* P 
HG00127 SDHB nonsense R90* P 
^NA11994 TP53 missense R273H P 
^NA12003 TP53 missense R290H P 

     HG00611 BRCA2 frameshift D2566fs PP 
HG01377 BRCA2 nonsense E2355* PP 
NA19130 BRCA2 nonsense N1747>N* PP 
NA19397 BRCA2 frameshift L760_Y761fs PP 
NA20585 MSH6 frameshift E226fs PP 

     ^HG00332 APC missense R414C PP 
^Subjects harbor mutations that were also found in PCGP cohort.  
The five loss-of-function mutations highlighted in the middle have strong evidence for pathogenicity and would 
have been classified as “P” if they had corroborating evidence from other observations of the allele in cancer cases 
which is required for the Pathogenic status defined by ACMG 
 
B. Evidence supporting classification of five pathogenic mutations in 1KG 
BRCA1A1453_E12splice 

• Very rare variant [ 1 in 120k chromosomes in ExAc] 
• Truncating splice [at exon 12/22]  in known haploinsufficient gene 

[ACMG:VeryStrong] 
• Previously reported in 3 breast cancer patients, suggesting enrichment 

[ClinVar] 
• 3 previous ratings of pathogenic of familial breast/ovarian cancer [ClinVar] 
• Observed in 21 NHGRI BRCA1 patients, indicating enrichment 

 SDHA S384* 

• Very rare variant [ 2 in 120k chromosomes in ExAc] 
• Truncating allele within gene where loss of function is a known mechanism of 

disease  
• Observed in a homozygous state in an individual with phenotype and no 

additional known causal alleles (PMID: 21505157) 
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SDHB R90* 

• Very rare variant [ 1 in 120k chromosomes in ExAc] 
• Truncating variant in gene where heterozygous loss-of-function alleles known 

to result in paraganglioma/pheochromocytoma 
• Identified in 5 individuals with paraganglioma/pheochromocytoma [OMIM] 
• Segregated with disease in 5 affected family members from 3 families (Astuti 

2001, Amar 2005, Sivapackianathan 2007) 
• 4 previous ratings of pathogenic in Hereditary Paraganglioma-

Pheochromocytoma Syndromes [ClinVar] 

 TP53 R273H 

• Very rare variant [ 3 in 114k chromosomes in ExAc] 
• Germline mutation hotspot in cancer patients [54 instances in IARC-TP53 

database] 
• Segregated with disease in a family with second malignant neoplasms (PMID: 

1565144) 
• 4 previous ratings of pathogenic including 2 Li-Fraumeni Syndrome and 2 

hereditary cancer predisposition syndrome[ClinVar] 
• Somatic mutation hotspot  [679 tumors in COSMIC] 

 TP53 R290H 

• Very rare variant [ 19 in 121k chromosomes in ExAc] 
• Germline mutation in 24 cancer patients [IARC-TP53 database] 
• 3 Li-Fraumeni Syndrome  & hereditary cancer predisposition 

syndrome[ClinVar] 
• Recurrent somatic mutation  [20 tumors in COSMIC] 

 

C. Comparison of mutation frequency in PCGP with 1000 Genome 

Comparison PCGP 
(mut/all) 

1KG 
(mut/all) 

Fisher's exact test 

p-value Odds ratio 

All PCGP 94/1120 11/966 5.94x10-16 7.9 

PCGP exclude ACT, HYPO 56/1034 11/966 3.04x10-8 5 

^: excluding hypodiploid-ALL (HYPO, n=47) and adrenocortical carcinoma (ACT, n=39).  
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Table S7. Pathogenic (P) or Probably Pathogenic (PP) mutations found in the NDAR 
autism cohort including 515 cases and 208 controls 
 

A. Pathologenic or probably pathogenic mutations 
Subject Gene Mutation Type Pathogenicity 
98HI0605A PALB2 R753* nonsense P 
03HI2710A SDHA R31* nonsense P 

     04HI2908A APC E74_E4splice splice PP 
04HI3508B STK11 Q8* nonsense PP 

NF1 and PTEN were not included in the analysis as both genes are known to be associated with autism. Suspected 
false positive calls removed from this analysis include PTCH1 Y1013* which was found to be false positive in the 
1KG data and was also filtered by ExAC. Two splice site variants, APC R216_E7splice and RB1 R445_E14splice, 
were detected in 3 and 5 individuals with 3 individuals harboring both variants, suggesting a potential systematic 
variant calling error. 

B. Evidence for mutation pathogenicity in Autism Project 
PALB2 R753* 

• Very rare variant [ 4 in 120k chromosomes in ExAc] 
• Truncating mutation  in a gene where LoF is a known mechanism of disease 

(PMID: 17200671) 
• Reported as shared between two women with hereditary breast cancer (PMID: 

19763884) 
• Recently rated pathogenic of hereditary cancer-predisposing 

syndrome[ClinVar] 

 SDHA R31* 

• Very rare variant [ 20 in 121k chromosomes in ExAc] 
• Truncating mutation  in a gene where LoF is a known mechanism of disease 

[ACMG:VeryStrong] 
• Observed in 5 independent paragliomas [ACMG:Strong] 
• Recently rated pathogenic of hereditary cancer-predisposing 

syndrome[ClinVar] 
• Observed in GST patient as part of compound heterozygote (PMID 21505157 ) 
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C. Comparison of mutation frequency in PCGP with Autism 

Comparison PCGP§ 
(mut/all) 

Autism§ 
(mut/all) 

Fisher's exact test 
p-value Odds ratio 

All PCGP 90/1120 4/723 7.36x10-16 15.7 

     ^PCGP exclude ACT, HYPO 52/1034 4/723 8.13x10-9 9.5 
 
^: excluding hypodiploid-ALL (HYPO, n=47) and adrenocortical carcinoma (ACT, n=39). 

§: NF1 and PTEN were excluded for summary. 
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Table S8. Twelve cases with multiple germline pathogenic/probably pathogenic or 
truncation mutations.  

  1Pathogenic or Probably Pathogenic   Truncation 

Cases 
Autosomal  
Dominant 

Autosomal 
Recessive  

Tumor 
Suppressor Kinase Other 

HGG111 PMS2 p.Q643*               
PMS2 p.K413fs        

PDCD1LG2 
p.W221fs   KTN1 

p.R1206* 

HGG027   ATM p.L2312fs 
p.L2544_E52splice        

EWS010375 TP53 p.P222L MUTYH p.A379fs        

EPD023 NF2 
p.K149_E4splice 

NBN 
p.S418_N419fs        

NBL135 ALK p.R1275Q FANCA E1023*      ECT2L p.E351* 

E2A036 BRCA2 
p.Y3098* 

FANCD2 
p.W1268G        

ACT061 TP53 p.R337H    
FOXO1 
p.R269*     

BALL021324 BRCA1 p.I783fs        GNAS p.L166fs 

E2A028   MUTYH 
p.V309_E11splice    FLT3 

p.Q494fs   

EPD008 TP53 p.Y107H        CBLC p.V399fs     
HOXA9 p.E238* 

MLL014          
RNF213 

p.R4601fs, 
MRE11A p.L57* 

PHALL021           POLD3 p.S371fs  
FIP1L1 p.R298* 

 
1Pathogenic or probably pathogenic mutations were classified only for the 60 autosomal dominant 
genes and 29 autosomal recessive genes 
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Table S9. Enrichment of truncation mutations in PCGP  (n=1,120) compared to The 
Exome Aggregation Consortium (ExAC, n=60,706).   
Genes with enrichment in truncation mutations are shown by descending order of statistical 
significance based on Fisher's exact test. The level of enrichment for truncation mutations is 
shown, ranked by descending order of statistical significance based on Fisher's exact test on 
allele counts. Only genes with odds ratio >1 are included. Correction for multiple testing was 
performed using FDR, as described in Benjamini, Y. and Hochberg (1995)33  and implemented 
in the R adjust function. These enrichment statistics and rankings should be considered 
exploratory in nature, as per the caveats indicated in Supplemental Methods. 

Gene Category Rank Num. in 
PCGP 

Num. in 
ExAc 

original  
p-value 

corrected  
p-value 

TP53 Autosomal Dominant 1 11 11 1.23E-14 1.353E-12 
NOP10 Autosomal Recessive 2 2 1 0.0010 0.0394 
FCRL4 Other CancerGene 3 4 27 0.0011 0.0394 

PML Tumor Suppressor 4 4 30 0.0028 0.0634 
SHROOM2 Other CancerGene 5 3 16 0.0035 0.0634 

USP6 Other CancerGene 6 6 91 0.0037 0.0634 
WRN Autosomal Recessive 7 5 72 0.0040 0.0634 

ERCC3 Autosomal Recessive 8 4 39 0.0057 0.0782 
HOXA9 Other CancerGene 9 2 6 0.0067 0.0820 

RB1 Autosomal Dominant 10 3 23 0.0095 0.1045 
GNAS Other CancerGene 11 3 25 0.0132 0.1313 
BUB1B Tumor Suppressor 12 3 32 0.0146 0.1313 
CHEK2 Tumor Suppressor 13 4 63 0.0155 0.1313 
RECQL4 Autosomal Recessive 14 4 75 0.0199 0.1562 

FLT3 Other CancerGene 15 2 17 0.0267 0.1836 
KIF5B Other CancerGene 16 2 19 0.0267 0.1836 
PMS2 Autosomal Dominant 17 3 55 0.0350 0.2115 
ELANE Other CancerGene 18 1 1 0.0365 0.2115 
FOXO1 Tumor Suppressor 19 1 1 0.0365 0.2115 
ACSL6 Other CancerGene 20 2 23 0.0385 0.2117 
BRCA2 Autosomal Dominant 21 6 141 0.0410 0.2150 
MUTYH Autosomal Recessive 22 3 51 0.0448 0.2240 

ABL1 Kinase 23 1 3 0.0543 0.2597 
RNF213 Other CancerGene 24 5 141 0.0662 0.2874 
IGF2R Tumor Suppressor 25 2 27 0.0666 0.2874 

SH3GL1 Other CancerGene 26 1 7 0.0717 0.2874 
TTL Other CancerGene 27 1 3 0.0717 0.2874 

TSHR Other CancerGene 28 2 27 0.0771 0.2874 
ABL2 Other CancerGene 29 2 31 0.0881 0.2874 
GPHN Other CancerGene 30 1 5 0.0888 0.2874 
NF2 Autosomal Dominant 31 1 5 0.0888 0.2874 
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RUNX1 Autosomal Dominant 32 1 8 0.0888 0.2874 
SEPT6 Other CancerGene 33 1 4 0.0888 0.2874 

TGFBR1 Other CancerGene 34 1 5 0.0888 0.2874 
POLD1 Other CancerGene 35 2 36 0.0938 0.2917 
ECT2L Other CancerGene 36 3 74 0.0955 0.2917 
ARID1A Tumor Suppressor 37 1 7 0.1056 0.2936 
MED12 Other CancerGene 38 1 7 0.1056 0.2936 

SYK Tumor Suppressor 39 1 5 0.1056 0.2936 
LAMA5 Other CancerGene 40 3 76 0.1068 0.2936 
CRTC3 Other CancerGene 41 1 12 0.1221 0.3169 

EZR Other CancerGene 42 1 10 0.1221 0.3169 
DDB2 Autosomal Recessive 43 1 9 0.1383 0.3169 
ELN Other CancerGene 44 1 27 0.1383 0.3169 

MLLT1 Other CancerGene 45 1 7 0.1383 0.3169 
MSH2 Autosomal Dominant 46 1 12 0.1383 0.3169 
NSD1 Other CancerGene 47 1 7 0.1383 0.3169 

POLD3 Other CancerGene 48 1 11 0.1383 0.3169 
ATM Autosomal Recessive 49 4 137 0.1464 0.3200 
NF1 Autosomal Dominant 50 3 84 0.1478 0.3200 

CARD11 Other CancerGene 51 1 11 0.1542 0.3200 
FIP1L1 Other CancerGene 52 1 18 0.1542 0.3200 
KDSR Other CancerGene 53 1 8 0.1542 0.3200 

FANCL Autosomal Recessive 54 2 48 0.1615 0.3290 
EP300 Other CancerGene 55 1 11 0.1698 0.3396 

NUP214 Other CancerGene 56 2 52 0.1746 0.3430 
PDCD1LG2 Other CancerGene 57 1 13 0.1851 0.3510 

TCF12 Other CancerGene 58 1 14 0.1851 0.3510 
TERT Autosomal Recessive 59 1 17 0.2001 0.3731 

FANCI Autosomal Recessive 60 2 68 0.2284 0.3942 
CIITA Other CancerGene 61 1 23 0.2293 0.3942 

G6PC3 Other CancerGene 62 1 16 0.2293 0.3942 
PPP Other CancerGene 63 1 15 0.2293 0.3942 

NUMA1 Other CancerGene 64 1 17 0.2293 0.3942 
OMD Other CancerGene 65 1 14 0.2435 0.4121 
APC Autosomal Dominant 66 1 21 0.2575 0.4165 

CBLC Other CancerGene 67 1 21 0.2575 0.4165 
PTCH1 Autosomal Dominant 68 1 17 0.2575 0.4165 
ALDH2 Other CancerGene 69 1 21 0.2712 0.4201 
DIP2B Other CancerGene 70 1 23 0.2712 0.4201 
TPR Other CancerGene 71 1 21 0.2712 0.4201 

TRIP11 Other CancerGene 72 2 58 0.2762 0.4220 
ETV4 Other CancerGene 73 1 23 0.2846 0.4220 

FANCF Autosomal Recessive 74 1 18 0.2846 0.4220 
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MRE11A Other CancerGene 75 1 23 0.2978 0.4220 
SH2B3 Autosomal Recessive 76 1 20 0.2978 0.4220 
TCF3 Other CancerGene 77 1 26 0.2978 0.4220 

ERBB2 Other CancerGene 78 1 27 0.3107 0.4220 
FGFR3 Other CancerGene 79 1 30 0.3107 0.4220 
FLCN Tumor Suppressor 80 1 22 0.3107 0.4220 
PCSK7 Other CancerGene 81 1 24 0.3107 0.4220 
BRIP1 Autosomal Recessive 82 2 68 0.3171 0.4242 
IL7R Other CancerGene 83 1 23 0.3234 0.4242 

FANCM Autosomal Recessive 84 2 68 0.3239 0.4242 
HAX1 Other CancerGene 85 1 27 0.3359 0.4247 

NCKIPSD Other CancerGene 86 1 26 0.3359 0.4247 
SETD2 Other CancerGene 87 1 23 0.3359 0.4247 
KLK2 Other CancerGene 88 1 26 0.3481 0.4303 
SDHA Autosomal Dominant 89 1 28 0.3481 0.4303 
PCM1 Other CancerGene 90 1 38 0.3602 0.4402 

FANCG Autosomal Recessive 91 1 35 0.3720 0.4496 
KTN1 Other CancerGene 92 1 35 0.3949 0.4671 
LIFR Other CancerGene 93 1 32 0.3949 0.4671 

FANCC Autosomal Recessive 94 1 31 0.4060 0.4702 
PINK1 Other CancerGene 95 1 31 0.4060 0.4702 
BARD1 Tumor Suppressor 96 1 34 0.4170 0.4778 

NBN Autosomal Recessive 97 1 46 0.4688 0.5316 
SSX1 Other CancerGene 98 1 51 0.4786 0.5372 
ATIC Other CancerGene 99 1 49 0.5069 0.5632 

ERCC5 Autosomal Recessive 100 1 44 0.5336 0.5870 
MSH6 Autosomal Dominant 101 1 47 0.5671 0.6176 
PAPB2 Autosomal Dominant 102 1 53 0.5829 0.6286 
ERCC2 Autosomal Recessive 103 1 71 0.5906 0.6307 
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Table S10. Estimate of prevalence of germline cancer predisposition in SEER cohort. 
See Supplementary Appendix 2, Table S10.  
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